References
- Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. Marais F et al, J Hosp Infect (2009), doi:10.1016/j.jhin.2009.07.010.
- Role of Copper in Reducing Hospital Environment Contamination. A L Casey, D Adams, T J Karpanen, P A Lambert, B D Cookson, P Nightingale, L Miruszenko, R Shillam, P Christian and T S J Elliott, J Hosp Infect (2009), doi:10.1016/j.jhin.2009.08.018.
- The Antimicrobial Efficacy of Copper Alloy Furnishing in the Clinical Environment; a Cross-over Study. Karpanen T J, Casey A L, Lambert P A, Cookson B D, Nightingale P, Miruszenko L and Elliott T S J. Infection Control and Hospital Epidemiology (2012).
- Evaluation of Antimicrobial Properties of Copper Surfaces in an Outpatient Infectious Disease Practice. Seema Rai, Bruce E Hirsch, Hubert H Attaway, Richard Nadan, S Fairey, J Hardy, G Miller, Donna Armellino, Wilton R Moran, Peter Sharpe, Adam Estelle, J H Michel, Harold T Michels and Michael G Schmidt. Infect Control Hosp Epidemiol. 2012 Feb
- Application of copper to prevent and control infection. Where are we now? O’Gorman J, Humphreys H, Journal of Hospital Infection (2012).
- Copper Continuously Limits the Concentration of Bacteria Resident on Bed Rails within the Intensive Care Unit. Michael G Schmidt, PhD; Hubert H Attaway III, MS; Sarah E Fairey, BS; Lisa L Steed, PhD; Harold T Michels, PhD; Cassandra D Salgado, MD, MS. Infection Control and Hospital Epidemiology, Vol. 34, No. 5. Special Topic Issue: The Role of the Environment in Infection Prevention (May 2013), pp. 530-533.
-
Copper Surfaces are Associated with Significantly Lower Concentrations of Bacteria on Selected Surfaces within a Pediatric Intensive Care Unit. Michael G. Schmidt PhD; Bettina von Dessauer MD; Carmen Benavente MD; Dona Benadof MD; Paulina Cifuentes RN; Alicia Elgueta RN; Claudia Duran MS; Maria S. Navarrete MD MPH. American Journal of Infection Control, doi:10.1016/j.ajic.2015.09.
-
Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit. Cassandra D Salgado, MD; Kent A Sepkowitz, MD; Joseph F John, MD; J Robert Cantey, MD; Hubert H Attaway, MS; Katherine D Freeman, DrPH; Peter A Sharpe, MBA; Harold T Michels, PhD; Michael G Schmidt, PhD. Infection Control and Hospital Epidemiology.
-
The Economic Assessment of an Environmental Intervention: Discrete Deployment of Copper for Infection Control in ICUs. M Taylor, S Chaplin, York Health Economics Consortium, York, UK, Antimicrobial Resistance and Infection Control 2013, 2(Suppl1):P368.
-
Financial Benefits after the Implementation of Antimicrobial Copper in Intensive Care Units (ICUs). P Efstathiou, E Kouskouni, S Papanikolaou, K Karageorgou, Z Manolidou, M Tseroni, E Logothetis, C Petropoulou, V Karyoti. Antimicrobial Resistance and Infection Control 2013, 2(Suppl 1):P369.
-
From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections. Michels, H.T. 2015. Health Environments Research & Design Journal. 1–16.